Hints for Metal-Preference Protein Sequence Determinants: Different Metal Binding Features of the Five Tetrahymena thermophila Metallothioneins

نویسندگان

  • Anna Espart
  • Maribel Marín
  • Selene Gil-Moreno
  • Òscar Palacios
  • Francisco Amaro
  • Ana Martín-González
  • Juan C. Gutiérrez
  • Mercè Capdevila
  • Sílvia Atrian
چکیده

The metal binding preference of metallothioneins (MTs) groups them in two extreme subsets, the Zn/Cd- and the Cu-thioneins. Ciliates harbor the largest MT gene/protein family reported so far, including 5 paralogs that exhibit relatively low sequence similarity, excepting MTT2 and MTT4. In Tetrahymena thermophila, three MTs (MTT1, MTT3 and MTT5) were considered Cd-thioneins and two (MTT2 and MTT4) Cu-thioneins, according to gene expression inducibility and phylogenetic analysis. In this study, the metal-binding abilities of the five MTT proteins were characterized, to obtain information about the folding and stability of their cognate- and non-cognate metal complexes, and to characterize the T. thermophila MT system at protein level. Hence, the five MTTs were recombinantly synthesized as Zn(2+)-, Cd(2+)- or Cu(+)-complexes, which were analyzed by electrospray mass spectrometry (ESI-MS), circular dichroism (CD), and UV-vis spectrophotometry. Among the Cd-thioneins, MTT1 and MTT5 were optimal for Cd(2+) coordination, yielding unique Cd17- and Cd8- complexes, respectively. When binding Zn(2+), they rendered a mixture of Zn-species. Only MTT5 was capable to coordinate Cu(+), although yielding heteronuclear Zn-, Cu-species or highly unstable Cu-homometallic species. MTT3 exhibited poor binding abilities both for Cd(2+) and for Cu(+), and although not optimally, it yielded the best result when coordinating Zn(2+). The two Cu-thioneins, MTT2 and MTT4 isoforms formed homometallic Cu-complexes (major Cu20-MTT) upon synthesis in Cu-supplemented hosts. Contrarily, they were unable to fold into stable Cd-complexes, while Zn-MTT species were only recovered for MTT4 (major Zn10-MTT4). Thus, the metal binding preferences of the five T. thermophila MTs correlate well with their previous classification as Cd- and Cu-thioneins, and globally, they can be classified from Zn/Cd- to Cu-thioneins according to the gradation: MTT1>MTT5>MTT3>MTT4>MTT2. The main mechanisms underlying the evolution and specialization of the MTT metal binding preferences may have been internal tandem duplications, presence of doublet and triplet Cys patterns in Zn/Cd-thioneins, and optimization of site specific amino acid determinants (Lys for Zn/Cd- and Asn for Cu-coordination).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms

Metallothioneins (MT) constitute a superfamily of small cytosolic proteins that are able to bind metal cations through numerous cysteine (Cys) residues. Like other organisms the ciliate Tetrahymena thermophila presents several MT isoforms, which have been classified into two subfamilies (Cd- and Cu-metallothioneins). The main aim of this study was to examine the specific functions and transcrip...

متن کامل

A New Ciliate Species, Tetrahymena farahensis, Isolated from the Industrial Wastewater and Its Phylogenetic Relationship with Other Members of the Genus Tetrahymena

Anthropogenic activities are dumping heavy metals into the environment as waste effluents or integral part of some compounds. This has resulted in an increase in the metal concentration, beyond the permissible threshold, leading to metal toxicity for all forms of life. Metal resistant ciliates remove metal ions from contaminated water, mainly by the process of bioaccumulation. This bioaccumulat...

متن کامل

DIFFERENT RESPONSE OF TWO METALLOTHIONEIN SUBFAMILIES EXPOSED TO CHROMIUM (VI) IN Tetrahymena thermophila

The expression of the heavy-metal-binding proteins, metallothioneins (MTs), are induced by heavy metals such as Cd, Cu, Zn, and Hg. MTs attenuate toxic heavy metals by sequestering them and decreasing their intracellular concentrations. However, Cr(VI) inhibits MT gene transcription in higher eukaryotes. In this study, we found that Cr affect Tetrahymena thermophila proliferation, and the letha...

متن کامل

Tetrahymena Metallothioneins Fall into Two Discrete Subfamilies

BACKGROUND Metallothioneins are ubiquitous small, cysteine-rich, multifunctional proteins which can bind heavy metals. METHODOLOGY/PRINCIPAL FINDINGS We report the results of phylogenetic and gene expression analyses that include two new Tetrahymena thermophila metallothionein genes (MTT3 and MTT5). Sequence alignments of all known Tetrahymena metallothioneins have allowed us to rationalize t...

متن کامل

Does Variation of the Inter-Domain Linker Sequence Modulate the Metal Binding Behaviour of Helix pomatia Cd-Metallothionein?

Snail metallothioneins (MTs) constitute an ideal model to study structure/function relationships in these metal-binding polypeptides. Helix pomatia harbours three MT isoforms: the highly specific CdMT and CuMT, and an unspecific Cd/CuMT, which represent paralogous proteins with extremely different metal binding preferences while sharing high sequence similarity. Preceding work allowed assessing...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015